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Abstract 

Continuing the investigation of the canonical map of divisor class groups j* : Cl(B) + 
‘* Cl(B/tB), we consider what happens if kerJ is nonzero. The first result gives an injection 

of Cl(B) into n,,, CI(B/t”B), where the definition of class group is extended to include the 
_ 

rings B/t”B. We also get an action of kerj* on small MCM B-modules, resulting, in the case 
of a ring A without DCG and with a small MCM module C, in infinitely many distinct small 
MCM A[[T]]-modules lifting C. @ 1998 Elsevier Science B.V. All rights reserved. 

AMS Classification: 13C20, 13C14, 13F15, 13F25 

0. Introduction 

In commutative algebra it is often interesting to look at “Lefschetz-type” questions, 

i.e. how properties of a commutative noetherian ring S transfer to properties of hyper- 

surface cuts S/fS of S, and vice versa. 

In this paper we consider two such problems. First, we compare the divisor class 

group of a commutative Noetherian ring B to the divisor class group of a hypersurface 

section B/fB of B. Second, we use elements of the kernel of a certain map between 

the divisor class groups of B and B/fB to construct new finitely generated maximal 

Cohen-Macaulay modules from given modules of this kind. 

The divisor class group Cl(B) of a normal domain B measures how close B is to 

having unique factorization, in the sense that it is trivial if and only if B has unique 

factorization. 
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Samuel asked, for a complete unique factorization domain A, whether the formal 

power series ring A[[ T]] has unique factorization [ 171. To study Samuel’s question, 

Danilov looked at the more general problem, for any normal domain A, of comparing 

the divisor class groups Cl(A) and Cl(A[[T]]) [3-61. 

Danilov considered the homomorphism 

i* : Cl(A) + Cl(A[[ T]]) 

and its left splitting 

j* : Cl(A[[T]]) 4 Cl(A). 

The ring A is said to “have discrete divisor class group” if i” is bijective. Since j* is a 

left splitting for i*, this is equivalent to j” being injective. Unlike unique factorization, 

discreteness of the divisor class group is a local property of the ring and is reflected 

by faithfully flat extensions, and hence easier to study. 

Using techniques of algebraic geometry, Danilov explored conditions for a ring to 

have discrete divisor class group. He answered Samuel’s question in the affirmative 

under the additional assumption that the residue field of A is algebraically closed. He 

also characterised excellent normal Q-algebras with discrete divisor class group, thus 

showing that many such rings have non-discrete divisor class group. 

We consider the more general setting introduced by Lipman: let B and B/tB be 

normal domains, and let j* be the canonical homomorphism from the divisor class 

group of B to that of B/tB (see [13]). To examine j* more closely, we consider class 

groups of the rings BIt”B for n > 1. As BIt”B is not a normal domain if n > 1, we 

first extend the definition of divisor class group to cover these rings. 

We let j: be j*, and we define, for n > 2, homomorphisms j,” : Cl(B) + Cl(B/t”B) 

and & : Cl(B/t”B) + Cl(B/t”-‘B). These maps are compatible with each other and so 

provide a map 

1’: Cl(B) + lim Cl(B/t”B). 

The main result is the following theorem. 

Theorem 5.3. If B is t-ndicully complete, then the map j” is injectiue. 

Maximal Cohen-Macaulay modules are those modules with depth equal to the 

dimension of the ring. It is still unknown whether finitely generated maximal Cohen- 

Macaulay modules exist over every commutative Noetherian ring. We prove the fol- 

lowing theorem in order to create, for certain rings B, new finitely generated maximal 

Cohen-Macaulay B-modules from old ones. Let ‘9JI be the set of isomorphism classes 

of finitely generated maximal Cohen-Macaulay B-modules. 

Theorem 6.1. Suppose B and BItB are normal domains such that BItB satisjies Rz. 

Then the kernel of the map j” : Cl(B) + Cl(B/tB) acts on $332 in the following way: 

if [D] E ‘931 and [a] E ker j*, then 

[al.[Dl = Womda,D)l. 
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This action has the following properties: 

(a) Zf [D], [E] E $93 are in the same orbit, then D/tD ” EJtE. 

(b) Let [D] E YJI and n = ranks(D). Zf [a], [b] E ker j* are such that n[a] #n[b], then 

[aI. [Dlf PI. [Dl. 

Statement (b) of Theorem 6.1 implies that this action is free when ker j* is torsion- 

free. Thus, when kerj* is torsion-free and non-zero, this action produces from a single 

finitely generated maximal Cohen-Macaulay B-module infinitely many such modules. 

Moreover, by statement (a), all these modules are lifts of the same B/t&module. 

Hochster gives an example of a finitely generated maximal Cohen-Macaulay module 

C over a certain Q-algebra A (see [lo]). By Danilov’s characterisation, A has non- 

discrete divisor class group, and, by a theorem of Griffith and Weston, the kernel of 

j* : Cl(A[[T]]) + Cl(A) is torsion-free [9, (1.3)]. So, by (6.1) the action of kerj* 

produces an infinite number of finitely generated maximal Cohen-Macaulay A[[T]]- 

modules from the module C[[T]], all lifts of C. This shows that lifts of maximal 

Cohen-Macaulay modules are far from unique. 

The first three sections contain definitions, notation, and known results which we 

will use. In Section 4 we define a divisor class group for rings which satisfy Serre’s 

condition S2 but are not necessarily normal, and we verify that it is a group. In Sec- 

tions 5 and 6 we prove the two main results, and in Section 7 we give an example 

illustrating the second one. 

1. Definitions, notation, and relevant results 

We begin by reminding the reader of a few elementary definitions without specific 

reference. Most terms and concepts involved can be found in the texts by Matsumura 

[15] and Bourbaki [2]. All rings are assumed to be commutative, local, and Noetherian. 

For any module M over the local ring (R,m), the depth of M, denoted by depth&, 

is defined to be inf{i/ Exti(R/m,M) # O}. 

The dual M* of an R-module M is HomR(M,R), and M** means (M”)“. There 

is a canonical map 0 :A4 + IV**. If r~ :M ---f IV** is bijective, A4 is said to be 

reflexive. Let S be the multiplicatively closed subset of R of the non-zero divisors on R. 

If the canonical map r : M 4 S-lM is injective, then M is said to be torsion-free. 

If S-‘M = 0, then M is said to be torsion. If R is Gorenstein in codimension one, 

then M is torsion-free if and only CJ: M + M ** is injective. If, in addition, R satisfies 

Serre’s condition S,, then M is torsion-free if and only if M satisfies S1, and M is 

reflexive if and only if M satisfies S, (see [7, Lemma 3.4 and Theorem 3.61). 

We collect now some facts which can be easily derived from the results in Section 4 

of [l]. 

Proposition 1.1. If M und N are ,jinitely generated R-modules such that R und N 

satisjj S?, then the module Hom(M,N) sati:fies 5’1 and we have an isomorphism 

Hom(M, N) ” Hom(M**, N). 
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Lemma 1.2 (Auslander and Goldman [l]). Let M and N be finitely generated mod- 

ules over a Noetherian ring R and 4 : M ---f N be a homomorphism such that 

4p : Mp + Np is an isomorphism for any prime ideal P of height less than or equal 

to one. If M satisfies SZ and N satisjes SI, then 4 is an isomorphism. 

Finally, we present a few homological facts which will be used in the proof of 

Theorem 5.3. 

Proposition 1.3 (Jensen [12, p. 131). A directed system (71, : M,,+l + M,},>, of sur- 

- jective maps in a category gives rise to the following exact sequence: 

O+nM,~,,:~M,+O, 

n>l n>l 

where a((ml,mz,...)) = (ml - ( ) 7~1 m2 ,m2 - z2(m3), . ,m, - z,,(m,,+l), .) and r is the 

natural injection. 

A short exact sequence of R-modules 0 + Ml -+ M2 + M3 is said to be pure exact 

if 0 + Ml @ N + M2 @ N + M3 @ N is exact for any R-module N. It is enough 

to check the condition for any finitely generated module N (see [16, Example 3.401). 

Furthermore, the following fact holds (see [12, Proposition 4.51). 

Proposition 1.4. Let R be any ring. Suppose 0 + MI + M2 + M3 is a pure exact 

sequence of R-modules and T is a jinitely presented R-module. Then application of 

the functor Hom( T, __) to the sequence gives a short exact sequence 

0 + HomR(T,Mi) + HomR( T, M2) t HomR( T, M3) + 0. 

2. More preliminaries: the divisor class group of a normal domain 

Let A be 

class group 

modulo the 

given by 

a normal domain, and let K be the field of fractions of A. The divisor 

Cl(A) may be defined as the group of divisorial fractionary ideals 9(A) 

subgroup of principal fractionary ideals g(A) where the multiplication is 

a.6 = [A: [A : ab]] for a, b E 9(A), 

where [M: N] denotes the fractionary ideal consisting of the elements x of K such 

that XN 5 M. Equivalently, Cl(A) may be defined as the group of isomorphism classes 

of A-modules of rank one with multiplication given by [a].[b] = [(a @A b)**]. For a 

fractionary ideal a, [a] denotes the image of a in Cl(A). An element of Cl(A) is called 

a divisor class. The product on Cl(A) coincides with the following one 

[a].[61 = [HomA(a*, b)]. 

One may consult [2, Ch. VII] or [S] for further details. 
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It will be useful for our purposes to think of divisor classes in terms of attached 

divisors, as well. To define these, we first need one more equivalent definition of the 

divisor class group. 

Let Z”‘(A) denote the set of height one prime ideals of A. Let Div(A) denote the 

free abelian group @,Er,(A) Z on the set %‘(A). Elements of Div(A) are called divi- 

sors of A and are written in the form C, E,X,tA) np. p. There is a group isomorphism 

div : 23(A) + Div(A) defined by 

div(a) = c v,(a).p, 

FEI’C.4) 

where vp denotes the valuation of the discrete valuation ring A,. Letting the image 

of P(A) be denoted by Prin(A) we get that Cl(A) % Div(A)/Prin(A). The canonical 

surjection from Div(A) to Div(A)/Prin(A) is denoted by cl. 

We use additive notation for the product in Cl(A) when we view it as the group 

Div(A)/Prin(A). 

Now for a finitely generated module M over a normal domain there exists a free 

submodule F of M such that M/F is torsion. The attached divisor of M, denoted by 

[Mlaa, is the element -cl(x(M/F)) of Cl(A), where 

x(r) = c t,+(TP).pEDiv(A), 
p H’(A) 

where G denotes the length function. By Proposition 15 of VII Section 4 of [2], it is 

independent of the choice of F. 

The proposition below gives some useful properties of attached divisors. 

Proposition 2.1 (Bourbaki [2, Proposition 16 of VII Section 41). (a) If 0 + Ml + 

M2 + Mx --f 0 is an exact sequence of jinitely generated modules, then [M& = 

W11ati + LM3latt. 
(b) Zf there is a homomorphism from Ml to M2 which is an isomorphism in codi- 

mension one, then [MI],, = [M&. 

(c) If a # 0 is a fractionary ideal of the fraction field K of A, then [a],,, = 

cl(div(a**)). 

(d) Zf L is a free module, then [Llaa = 0. 

It has the following corollary which we will use. 

Proposition 2.2 (Bourbaki [2, Corollary 2 of Proposition 16 of VII Section 41). If a 

divisorial fractionary ideal a # 0 has a jinite free resolution, then it is principal, 

i.e., [a] = 0 in Cl(A). 

In view of Proposition 2.1, the following result and definition are useful for working 

with attached divisors. 
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Proposition 2.3 (Bourbaki [2, Theorem 6 of VII Section 4.91). Let M he u ,jinitely 

generated R-module. Then there is a jree module F and a short exact sequence 

such that J is an ideul of R. 

Definition. Let fl be a property of a finitely generated module or a sequence of 

finitely generated modules (e.g. exact, split, vanishing, etc.). Pseudo-Y means that the 

property .Y holds in codimension one. 

3. More preliminaries: some results on divisor class groups 

In this section we give a few results about divisor class groups. Danilov first de- 

fined a map j* : Cl(A[[T]]) + Cl(A) splitting the usual map i* : Cl(A) + Cl(A[[T]]). 

Subsequently, Melchiors (Special, Aarhus Univ. 1972) demonstrated the existence of 

‘* J purely algebraically (see also [13, Section 11). The map is defined as 

follows. 

Proposition 3.1. Let B be a normal domain und t a non-unit such that BItB is u 

normal domain. Then there is a canonical group homomorphism j* : Cl(B) + CI(B/tB) 

given by 

j*([a]) = [(+a>**] = [(a @B B/tB)**l 

for uny reflexive A-module a of rank one. 

We will need the following result of Griffith and Weston. 

Theorem 3.2 (Griffith and Weston [9, Corollary 1.31). Let B be an excellent, local, 

normal domain which is u Q-ulgebru, and let t E B be u non-unit such that B/tB is u 

normal domain. Then the kernel of j* : Cl(B) ---) Cl(B/tB) is torsion-free. 

The following characterization by Danilov will be useful for finding examples of 

rings which have non-discrete divisor class group. 

Theorem 3.3 (Danilov [5, Theorem 21). Let A he un excellent, local, normal domain 

which is a Q-algebra. Then A has discrete divisor cluss group tj’und only tfA sutisjies 

S3 and the divisor cluss group cl((A~)‘~) of the strict henselisation of Ar isjnite jar 

every prime ideal P ojA of height less than or equal to two. 
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4. Extension of the definition of divisor class group to cover rings satisfying 

Serre’s condition 5’2 

To embark on an examination of the divisor class groups of normal domains B and 

B/tB via the rings B/t”B for n > 1, we first generalize the notion of class group to cover 

these rings. A property of a module M is said to hold in codimension i if for each prime 

ideal P of height less than or equal to i, the property holds for the &-module Mp. 

Definition. Let A be a ring which satisfies S2. The divisor class group of A, denoted 

by Cl(A), is the set of isomorphism classes of reflexive A-modules which are locally 

free of rank one in codimension one. The product is given by [a]. [b] = [(a @A b)**] 

for [a], [b] E Cl(A). 

As noted in the beginning of Section 2, when A is a normal domain, this definition 

gives the usual divisor class group (A satisfies RI); so, there is no contradiction in the 

notation Cl(A). 

Proposition 4.1. Let A be a ring which satisjies S2. Then Cl(A) as de$ned above is 

an abelian group with identity [A] and inverse [a]-’ = [a*], for [a] E Cl(A). Also, the 

assignment [a].[b] = [HomA(a*, b)] gives the same product. 

Proof. First we note that the product is well-defined: (a 8 b)**, the representative 

for the product of [a] and [b], is indeed reflexive and locally free of rank one in 

codimension one. 

The same idea is used throughout. To check a group identity, we first construct 

a natural map between the module representatives of the two sides. Then, using the 

fact that representatives of elements of Cl(A) are locally free in codimension one, 

we show that the map is an isomorphism in codimension one. To finish, we apply 

Lemma 1.2. 0 

5. Recovering divisor classes 

With our new definition of class group, we can now consider the groups Cl(B/t”B) 

for n > 1, as long as the rings B/t”B satisfy the S2 property. This happens, for example, 

in the following case: if t is a nonzero-divisor on B such that BJtB satisfies S2, then 

B/t”B satisfies S2 for all n > 1. 

In Section 3 we saw that if B is a normal domain and t is a non-unit such that BItB 

is a normal domain, then the canonical group homomorphism j* : Cl(B) + Cl(B/tB) is 

given by 

j*([a]) = [(a/ta)**] = [(a @B B/B)**]. 

We define the following additional group homomorphisms. 
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Lemma 5.1. Let B be a normal domain and t E B a nonunit such that BItB satisjies 

RI and B/t”B satishes S2 for all n 2 1. Then for each n 2 1 there is a group homo- 

morphism 

j,* : Cl(B) --+ Cl(B/t”B) 

given by j,*([a]) = [(a/t”a)**] = [(a 8~ B/t”B)**] w h ere the duals are with respect 

to the ring BIt”B. Also, j: is exactly j*. 

Proof. We show first that for every height two prime ideal P of B which contains t, 

BP is regular. Let rr : B * B/t”B be the usual surjection. If P is a height two prime 

ideal of B which contains t, then P=x(P) is a height one prime ideal of Bft”B. Since 

BPftBP = (B/tB)p is a regular local ring and t is a non-zero divisor on B, the ring Bp 

is regular. 

Therefore, any finitely generated reflexive B-module a is locally free at prime ideals 

of height at most two which contain t, and thus (a 8s B/t”B)** is locally free in 

codimension one over B/t”B of the same rank as a. So, j,* is well-defined. 

To see that the group structure is preserved by j,*, we consider for any [a], [b] E 

Cl(B) the natural map 

0: ((a gB b)** @s B/t”B)** ---f ((a @.B B/t”B)** @B (b @‘B B/t”@**)** 

which is induced by the maps a + (a @B B/t”B)** and b 4 (b @B Blt”B)**. Since a 

and b are locally free at height two primes of B which contain t, 8 is an isomorphism 

in codimension one over B/tB. Therefore, by Lemma 1.2, Q is an isomorphism. 0 

There are also maps between the divisor class groups Cl(B/t’B) as follows. 

Lemma 5.2. Let B and t be as in the previous lemma. Then for each n 2 1 there is 

a group homomorphism 

$,,+, : Cl(B/t”+‘B) + Cl(B/t”B) 

given by IC/n+r([a]) = [(a/Pa)**] = [(a@BB/t”B)**], w h ere the duals are with respect 

to the ring B/t”B. Furthermore, the maps $,,+I are compatible with the maps j,*. 

Proof. The canonical map Spec(B/t”B) --+ Spec(B/t n+’ B) is a height-preserving homeo- 

morphism. So, if a is locally free in codimension one over BJt”+‘B, then a @B B/t”B is 

locally free of the same rank in codimension one over B/t”B. By an argument similar 

to the one in the proof of the previous lemma, Lemma 1.2 implies that the maps Ic/n+l 

preserve the group structure and that &+I o ji+, = j,* for all n 2 1. 

The main result is the following one. 

Theorem 5.3. Let B be a local normal domain and t E B be a nonzero divisor such 

that B is t-adically complete and B/tB is normal. Then the maps j,* defined above 
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incluct~ an ifljection 

.j: Cl(B) - @ Cl(B/PB). 

Proof. Since lb,,+, o,in*+, = ,j,T for all n > 1, the image of the map 

.; : Cl(B) i I-I Cl(B/t”B) 

I,> I 

is actually in the canonical copy of the inverse limit of the groups Cl(B/t”B) in the 

product n,, , Cl(B/t”B). 

We first discuss a short exact sequence which we will use. Let M be a B-module 

and z,, : M,lt”+‘M ++ M/PM be the canonical surjections for n > 1. By Proposition 1.3, 

these maps give rise to the exact sequence 

0 4 ti M/t”M A n M/PM -I, n M/PM + 0, 

n2l n>l 

where a((m,,m2,. . .)) = (ml - n~(rnz),rn~ - nz(rnj),. . . ,m, - z,(m,+,),. . .) and r is the 

natural injection. 

If M is finitely generated, then A4 is t-adically complete, and the sequence becomes 

0 + M 5 n M/PM 5 n M/PM + 0, (*I 
112 I n>l 

where x is the obvious map. Consider sequence (*) for M = B: 

O-B A n BIt”B 5 n B/t”B + 0. (**) 
/I> I n>l 

Since tensoring with finitely presented modules commutes with products, sequence (** ) 

tensored with any finitely generated module M over the Noetherian ring R is just the 

exact sequence (*). Hence (**) is a pure exact sequence. 

Now suppose that [a] E Cl(B) is in the kernel of J. Let B, denote B/t”B. Then, 

for all n > 1, [(a 8~ &)**I is equal to the identity [Bn] of Cl(B,), and so its inverse 

[(a gE B,,)*] is equal to the identity [B,,] as well. So, we have the isomorphisms 

B,! E (a 1% B,,)” = HomB,(a @ B,,B,) LZ HomB(a,B,), 

for all n 2 1. By Proposition 1.4, an application of HomB(a, _) to the pure exact 

sequence (**) gives an exact sequence 

0 ----) Hom(a,B) + n Hom(a, B,) + n Hom(a, B,) + 0. (***) 
n>l n>l 

Since Hom(a,B,,) is isomorphic to B, = BIt”B and tn is a non-zero divisor on B, each 

factor of the product has projective dimension one over B. Since the flat dimension 

of the factors is bounded by one and since a product of flat modules is flat, the 

product n,,,, Hom( a, B,) has finite flat dimension. Sequence (* * *) then implies that 
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a* = Hom(a, B) has finite flat dimension as well. Thus, since every finitely generated 

R-module of finite flat dimension over a Noetherian ring has finite projective dimension 

(see [ 16, 3.581) a* has finite projective dimension. 

Since B is local, Proposition 2.2 implies that [a*] = 0. So, indeed, [a] = [a*]-’ = 0, 

and J is injective. L7 

Theorem 5.3 translates to the following result in the classical case of B = A[[?“]], t = 

T, and jr = j* : Cl(A[[T]]) + Cl(A). 

Corollary 5.4. For any normal domain A, 

7: Cl(A[[T]]) q &I Cl(A[[T]]/T”A[[T]]) 

is an injection. 

Remark. This is slightly surprising. Danilov showed that, for a large class of rings 

A, if Cl(A[[T]]) differs from Cl(A), it differs by an infinite dimensional vector space 

over Q. So, in those cases kerj* = kerj; is quite large indeed [3]. It is an interesting 

question whether the map in Theorem 5.3 is a surjection. 

6. Lifting maximal Cohen-Macaulay modules 

In this section we consider lifts of modules of a very special kind to a deformation 

of a ring. 

Definition. A module A4 over a local ring (R, m) is called a Cohen-Macaulay module 

if depth, M = dimR M. M is called a maximal Cohen-Macaulay module if mA4 # A4 

and depth, A4 = dim R. 

These modules have been much studied. Hochster constructed maximal Cohen- 

Macaulay modules over equicharacteristic local rings [l 11. On the other hand, it is 

still unknown whether finitely generated maximal Cohen-Macaulay modules exist in 

general, except for some specific cases. 

We prove the following theorem in order to create, for certain rings B, new finitely 

generated maximal Cohen-Macaulay B-modules from old ones. Let Yin, be the set of 

isomorphism classes of finitely generated maximal Cohen-Macaulay B-modules. 

Theorem 6.1. Suppose B und BItB are normal domains such that B/tB suti:fies R?. 

Then the kernel of the map j” : Cl(B) + Cl(B/tB) acts on V&J in the following way: 

if [D] E !& and [a] E ker j*, let 

[al . PI = [How(a 

This action has the following properties: 



C. Miller! Journul of’ Pure und Applied Algehru 127 (199X) 257~-271 267 

(a) [f’ [D], [E] E ‘5318 are in the same orbit, then D/t0 ” EJtE. 

(b) Let [D] E ‘!JJJLB and IZ = ranks(D). [f [a], [b] E ker,i* are such that n[a] # n[b], 

then [a] [D] # [b] [D]. 

Proof. Let D be a finitely generated maximal Cohen-Macaulay B-module, and let [a] 

be an element of the kernel of ,j*. Let K, denote Homs(a, D). Let us first show that 

K, is a maximal Cohen-Macaulay B-module such that WaJtWn 2 D/to. This involves 

an argument similar to the one used to prove the main result in [ 131. To simplify the 

notation, let B denote BItB, let D denote D/to, and let Z denote u,lta. 

Consider the long exact sequence: 

0 t Homs(a,D)AHomB(a,D) + Homs(a,D) 

+ ExtL(a,D)LExtL(a,D) + ExtL(a,D) - ... 

obtained from the short exact sequence 0 + D 5 D 4 D + 0. Now, HomB(a,D) ” 

Hom,(Z,D) % Horn,@**.- 0). where the second isomorphism holds by Proposition 1.1. 

But since [a] is in ker j*, we have that a** ” B and thus that Homz(-Si**, 0) ” 0. 

The goal is to show that ExtL(a,D) is zero, for then, by our long exact sequence, 

ExtL( a. D) would be zero by Nakayama’s lemma. Then the sequence 

0 + HomB(a, D) 5 Homa(a, D) + D > 0 

would be exact. So, since the module D is a finitely generated maximal Cohen- 

Macaulay B/tB-module, HomB(a, D) would have depth equal to 1 + depth(D) = 1 + 

dim(B) = dim(B). That is, W, = Homs(a, D) would be a finitely generated maximal 

Cohen-Macaulay B-module such that WO/tWo ” D/tD. 

Since t is a non-zero divisor on a and on B, it follows that, for any projective 

resolution P. of a over B, P. @B B is a projective resolution of ii over B. So, since t 

annihilates 0, we have the equality Extb(a,D) = Ext$@,D). 

Since a satisfies &, a is a torsion-free B-module. So, there is an exact sequence of 

B-modules 

O-cl+a ’ -**+coker - 0, 

where i: ii --f 11 -** is the canonical map of a module to its double dual. Application of 

Hom(__,D) gives the exact sequence 

Ext$i**, 0) + Ext$@, 0) + Exti(coker,D). 

Since [a] is in kerj*, (I** ” B and so Ext#i**,- D) = 0. Hence, in order to show that 

Extk(a,D) = 0, it is enough to show that Exti(coker,D) = 0. 

This follows from a simple grade argument. First we claim that the support 

Supp(coker) lies in codimension three and higher. By hypothesis, for any prime ideal 

P of B such that ht(P) 5 2, then BP is a regular local ring. Let 71: B -++ B be the 

canonical surjection, and let p = K-‘(P). Now Bp is a regular local ring, as well, 

since its quotient Bp/tBp = BP is regular. As such, it has unique factorization, that is, 
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Cl(Bp) = 0. Since ap is reflexive, [a(;] is an element of this trivial class group. So, 

a~ is free over BP, and thus (5)~ = ap @B B is free over BP = Bp @B B. So, the map 

i is an isomorphism in codimension two over B, and ht(ann(coker)) is thus at least 

three. Since D is a finitely generated maximal Cohen-Macaulay module, there is a D- 

sequence of length at least three in ann(coker). This implies that Ext$(coker,D) = 0 

for 0 5 i 5 2, as desired. 

To see that this is a group action, we note the following isomorphisms: 

Hom(A,D) ” D, 

Hom(a,Hom(b,D))~Hom(a@b,D)~Hom((a~b)**,D) 

for any [a],[b] E kerj*. The second row is the adjoint isomorphism followed by the 

conclusion of Proposition 1.1. So, indeed, 

Ml. [Dl = [Dl> 

[al . (PI . PI) = ([aI . PII. PI. 

For property (b) of the action of kerj*, we prove Lemma 6.3 below, which gives 

a formula for the attached divisor of HomB(a, D) for any [a] E Cl(B). Then for any 

elements [a] and [b] in Cl(B) such that n[a] # n[b], the formula implies that 

Nw(a,D>latt = -n [alan + [Watt # -n Platt + [Watt = [Homdb,D)latt. 

So, HomB(a,D) and HomB(b,D) are indeed non-isomorphic, and so [a] . [D] # 

PI. [Dl. 0 

In order to prove Lemma 6.3 we need first the following lemma. 

Lemma 6.2. Zfd:O + M + N + Q + 0 is a pseudo-exact sequence of finitely 

generated modules over a normal domain R, then [Nlatt = [AC& + [Qlatt. Let .F he 

an additive functor from the category of jinitely generated R-modules to itself which 

commutes with localization. Zf 8 is pseudo-split exact, then 9(B) is pseudo-split 

exuct, and so [F(N>latt = [F(M)],,, + [F(Q>latt. 

Proof. The first statement is essentially Proposition 2.1. The second is not expli- 

citly stated in Bourbaki, so, since we will need it, we give a quick proof of it: suppose 

&:O + M + N + Q + 0 is pseudo-split exact. Consider the sequence 

Y(W) : 0 + B(M) + 9(N) + 9(Q) + 0. Let P E X’(R). Since F commutes with 

localization, the complex (F(&))p is the same as 9(&p)). Now, by hypothesis 8~ is 

split exact. Therefore, since F is an additive functor, 9(&p) is split exact as well. 

Thus, 9(&Y) is pseudo-split exact. 0 

Lemma 6.3. Zf Z is cIn ideal of a normal domain R and A4 is u finitely generated 

torsion-free R-module of rank n, then 

WomdLW],, = -n[Z],ti + [A&. 
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Proof. By Proposition 2.3, there is a short exact sequence 

such that F is a free module of rank n - 1 and J is an ideal of R. This sequence is 

pseudo-split exact, as ideals of R are free in codimension one since they are torsion- 

free and since R satisfies RI. By Lemma 6.2 applied twice to the functor Horn&, R), 

the sequence 

is pseudo-split exact. So, as M** E M and F** ” F, we may assume J is reflex- 

ive when calculating [HomR(Z,M)],tt. Again by Lemma 6.2, applied to the mnctor 

HomR(Z, --) this time, 

[Hom(Z, Wlatt = [HomU, F)latt + [HomU, J>latt 

= (n - 1) V*latt + [HomU, J)lan. 

Since Hom(Z, J) satisfies Sz by Proposition 1 .l, we have a canonical isomorphism 

Hom(Z, J) !2 (Z* @J)**. Also, the right-hand side is isomorphic to an ideal of R since 

it is reflexive and of rank one. So, by part (c) of Proposition 2.1, 

[Hom(Z, J)laa = [(I* c% J)**h 
= cl(div(Z* @J)**) 

- cl(div(Z*)) + cl(div(J)) 

1 [I*latt + [Jlatt. 

Substituting this calculation into the previous one and realizing that [Mlatt = [Jlatt and 

v*1m = -[%t, we get the desired conclusion. 0 

In the case B = A[[T]] and t = T, Theorem 6.1 admits the following corollary. 

Corollary 6.4. Suppose A is a normal domain which satis$es Rz, and C is a finitely 

generated maximal Cohen-Macaulay A-module. Let n = rankA( Then jar eoery 

[a] in the kernel ofj* : Cl(A[[T]]) + Cl(A), 

(i) W, = HomA[tr]l(a, C[[T]]) is a finitely generated maximal Cohen-Macaulay 

A[[T]]-module. 

(ii) Wa/tWa s C. 

Furthermore, if [a], [b] E kerj* are such that n[a] # n[b], then W, 2 W,. 

Since by Theorem 3.2 the kernel of j* : Cl(B) + Cl(B/tB) is torsion-free whenever 

B and B/tB are excellent normal domains of equicharacteristic zero, the corollary below 

follows immediately from Theorem 6.1. 

Corollary 6.5. Suppose B is an excellent normal domain of equicharacteristic zero 

and t E B is a non-unit such that BJtB is a normal domain which satisjies Rz. Zf 

ker j* # 0, then jar any jinitely generated maximal Cohen-Macaulay B-module D, 



there are kjinitely many ,$nitely generated maximal CohenPMacuulay B-modules W 

ivith the property thut W/tW E DltD. 

Again, in the special case of B = A [[ T]]. we get a corresponding result. We use the 

fact that if C is a maximal Cohen-Macaulay A-module, then C[[T]] = C @,d A[[T]] is 

a maximal Cohen-Macaulay A[[T]]-module. By a lift of an A-module C we mean an 

A[[T]]-module D such that D/t0 = C. 

Corollary 6.6. Suppose A is an escellent normal domuin oJ’ equi~haral.teristi~~ zero 

lvhich satisjies R2. If ker j* # 0, then any ,jnitelJl generated maximal Cohen--MacaulaJ 

A-module C has injinitely man)’ nonisomorphic lifts to ,$nitely generated maximal 

CohenPMacaulay A[ [ T]]-modules. 

7. An example of the lifting 

Theorem 3.3 of Danilov, which characterizes excellent normal Q-algebras A with 

a discrete divisor class group, makes it possible to find examples of rings such that 

ker j* # 0. In particular, to get an example illustrating Corollary 6.6, we need a local 

normal domain that satisfies Rz, but not &, and has a small maximal Cohen-Macaulay 

module. We will discuss one such example from a paper by Hochster [ 10, p. 1491. 

Let k be an algebraically closed field of characteristic zero. Choose a homoge- 

neous polynomial f E k[X,,X,,Xj] such that {Xr,Xz,J’} is a system of parameters for 

k[Xl,XI,X3], X32 @ (Xl,X,,f), and AI = k[X,,X2.X3]/(f‘) is projectively smooth, i.e., 

regular away from (Xl ,X2,X,). For example, let us take k = @ and J’ = Xf +X,3 + Xj’. 

Let A2 = k[YI, YJ. Then the Segre product A,) of Al and A2 has dimension three 

and 

A0 = k[x;Y,; i = 1,2,3, j = 1,2] c--i AI[YI, Yz], 

where xi is the image of X, in A 1. Let A be A0 localized at the homogeneous maximal 

ideal (xiYj : i = 1,2,3, ,j = 1,2). Then A is a local domain with regularity property Rz 

(and thus normal), but A does not have the property & as it is not Cohen-Macaulay 

(see [lo]). 

To see that A satisfies Rl, we note that A is isomorphic to the ring 

k[U, K W,X, Y,Zl 

> (UY-VX,VZ-wY,UZ-Wx,u3+V3+W3,X3+Y3+23) (L:I,,w,x,y,z)’ 

Localization of the three-dimensional ring A at any non-maximal prime ideal P causes 

one of the generators of the irrelevant maximal ideal to be inverted; by symmetry we 

may assume it is U. A quick check shows that 

k[U, V, W,Xl 
(WfV3_tW3) 
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The ring 

k[U, V, WI 
(U3 + V” + w3)(u,I..w) 

is regular away from the ideal (U, V, W), and so A[l/U] and thus also Ap are indeed 

regular. 

Let Q = Yt Al [ YI, Y,]flA,. Hochster showed that for large i > 0 the symbolic powers 

of Q are small maximal Cohen-Macaulay A-modules [lo, p. 1491. Since A is not S3. 

the kernel of j* is nonzero by Theorem 3.3 and torsion-free by Theorem 3.2. So, 

Corollary 6.6 implies that there are infinitely many nonisomorphic lifts of that small 

maximal Cohen-Macaulay A-module to small maximal Cohen-Macaulay modules over 

A[[T]]. This example shows that lifts of maximal Cohen-Macaulay modules are far 

from unique. 
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